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THROUGH THEIR IMPLEMENTATIONS
Richard Hamlet John Gannon
Mark Ardis Paul McMullin

Department of Computer Science
Unjversity of Maryland
College Park, Maryland 20742

Abstract

A data abstraction can be specified by a syntactic (domain-
range) description of its objects and operations on them, plus a
set of axioms descriting the behavior of the operations. In a
programming language that supports abstraction, abstract objects
are given a representation in terms of built-in data types (or
other, previously defined abstractions), and the abstract
operations are defined as procedures. The implemented
abstraction has a meaning, acquired from the definition of the
programming langyage; the axioms also specify an independent
meanings The crucial question is then whether or not efther
meaning is “correct,” that s, whether it corresponds to the
desired abstraction that the programmer had in mind. Using a
finite collection of tests, the axiom meaning and the code
aeéning can be compared for consistencys A compiler-based
system, DAISTS, {§s described fqé.autonating this process.

The.uork reported here was supported by a grdht from the Air“
Force Office of Scientific Research NN . Computer time
was provided in part by the Computer Science Center of the
University of Maryland.




Je Ingrodyction

The formal basis for data abstractions began with their
implementation in SIMULA classes [Dahl et al, 197C), and Hoare”s
correctness-based definition [Hoare 1972] that has now become
known as the "abstract model* approach, refined into a program-
proving method by the Alphard group (Wulf et al. 19761. The
“pure algebraic™ approach [ADJ 1978, Guttag 1977, Zilles 19751
avoids both assertion-based correctness and implementation.
Algebraic axioms may themselves be used as rewriting rules to
execute trial expressions from a data types The 0BJ (Goguen and
Tardo 1979) and AFFIR™ [Musser 1979] systems use this idea to
make specifications “executable” without a conventional program
doing the computations. In these systems there is no data-
abstraction programming Language, only a specification language
in whijch sample termg can be evaluated by symbolic methods.

Our bias is toward practical use ot abstractions, as
implemented in the programming language SIMPL-D. This view
probably began with the MIT CLU abstraction project LLiskov
19761, Homwever, a data-abstraction language by itself faces the
problem of communicating what the implementsztions mean. The
languaje nicely gives the syntay of the abstract objects, but
their semantics must be conveyed by commentary or by reading the
code. The former is unreliable, and the latter violates the very
reason for encapsulating abstractions in the first place. Also,
without an independent expression of the intended meaning, we are
unable to judge mechanically the success of the {fmplementing
code, we thus decided that the usefulness of SIMPL-D would be
enhanced ty the addition of specifications ¥n a machine-
processable form, The bias toward practical programming remains,
however, so we decided to keep away from correctness ideas in
tfavor of testing ideas. OQur plan is to use algebrafc-equation
specifications, and to test whether or not fmplementing code

meets thems




An immediate difficulty is that such a view has no
theoretical underpinning--the pure-algebraic approach does not
consider independent implementation in a programming language,

and the abstract-model approach is intertwined with correctness

methods. We must develop definitions appropriate to our
situation, definitions in which the implementation ¥s primary,

and “correctness” is an idea that a human being has, unconnected
with proof formalisme. The resulting definition can be viewed as

that of Hoare, with the assertfon-correctness removed. We
consider it @ unification of the algebrajic and abstract-model

approachesy, but from the algebraic side, unlike the effort of
[Flon and Misra 19791,

This report describes the abstraction programming language
SIMPL=D (Section 1); defines the meaning of “correct

implementation®” and “specification by axioms"™ (Section 2); gives

language and compiler extensions needed to support testing the

consistency of axioms and code (defining DAISTS, Section 3); and,

explores the significance of successful tests (Section &).
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T. §S1¥eL-0

SIMPL=-D is a memter of the SIMPL family of programming
languages [(Basili 1976] with features that permit the declaration
of abstract data types. This section first describes the basic
features that are common to several members of the SIMPL family
of lanyuages and then discusses the features that are unique to
SIMPL=-D.

SIMPL-D shares the following language features with some of
the other lLanguages in the SImPL family.

1« A program is a series of global variable declarations
folloyed by a series of procedure declarations. One procedure is
designated as the starting point of execution by including its

name in a START command as the last Line of a programe.

2. There §s no biock stpructyre and procedures may not be
nested. Each procedure may access global variables, formal
parametersy and local variablese.

le Procedures may be recursive. Procedures may not be passed
as parameters; scalar data objects may be passed by value or
reference and aggregates are passed by reference. Only scalar
objects may be returned as values. .

4« The language is strongly typed with the basic data types
integer, character, and strings Explicit conversion routines
exist to coerce values from one of the basic types to another.
Zero is false and nonzero is true in contexts requiring boolean
values (e.Qey IF statements). The usuval arithmetic, relational,
and logical operators are avaflables In addition, there are
string operators for concatenation and substring selection.

Se¢ The only intrinsic type generator is the array of single
dimension with compile=-time determinable bounds. The lower bound
for arrays is fixed at zero.

6s The statements of the Llanguage include assignment, IF,
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CASE, WHILE, EXIT, CALL, and RETURN. There are primitives for

stream and record input and output.

7. Separate compilation is supported using ENTRY and ExTernal
declarationse.

The primary new feature of SIMPL~-D is the CLASS. CLASS
declarations define new types which may subsequently be used in
other declarations. The interior of a CLASS is a serfes of
variable declarations (the representation) followed by a series
of procedure declarations (the body). Either the representation
(by declaring a CLASS to be CLEAR) or the procedures of the body
(by Listing them in the CLASS heading) may be visible outside a
CLASS declarations A CLASS with no procedures associated with it
and whose representation is available to users §s simply a
records Conversely, a CLASS whose representation can only be
accessed by users through the procedures of the CLASS defines an
abstract data type.

Users generally view CLASS objects as indivisible entities.
Inside the CLASS, these objects may be viewed as a sequence of
declaratfions of more primitive objectse The primiftive objects
may be declared with one of the storage attributes UNIQUE or
SHARED.

CLASS Stack = Push, Pop, Top, Empty

/* representation */

SHARED INT ARRAY Values(1099)
SHARED INT ARRAY Nextvalue(1000)
SHARED INT Avait
UNJQUE INT Stacktop
/* body #*/

ENDCLASS

.. ST~




UNIQUE components of a CLASS are allocated each time a CLASS
object is created, SHARED components of a CLASS are allocated
only once (no matter how many CLASS objects are created) at
program initiation and are common to all objects of the same
tycee. In the example above, each Stack object consists of a
single integer component, Stacktop. The value of a Stack object
might be constructed by using its Stacktop component as a
reference to a linked List whose Links are stored in Nextvalue.
The Llinks in Nextvalue reference positions in the integer array
Values that contain the values currently the list. ALl Stack
objects share the common space for values and Links; no Stack
object need overflow until the storage requirements for all Stack
objects exceeds 1000 values.

The body of a CLASS is a series of procedure and function
declarationss If one of these routfnes accepts a formal
parameter of the CLASS being defined, the body of the routine may
access the UNIQUE ccrponents of the formal using a period
notation similar to that of Pascal or PL/I. Since only a single
cog- of the SHARED components exist, no simflar qualification is
necessary to access theme Continuing our example from above, we
might define Pop as follows:

Stack -FUNC Pop(Stack S)

WRITE( “#asasn f ann’)
1 R? underflow
END
/* put location of previous value ¥n Stacktop */

Temp = Se.Stacktop
SeStacktop := Nextvalue(Temp)

Accession For /
/+*» update chain of avaflable locations #*/ NTIS GRAXL
Nextvalue(Temp) := Avail DDC TAB
Avail := Temp Unennounced

Justifiection oo el
RETURN(S)
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A Llist of integer parameters to the CLASS may be used to
control the sizes of the UNIQUE coamponents of the representation,
These parameters are themselves treated as UNIQUE coaponents of
an objecty, but their values may only be altered by the assignment
of an object to the entire object of which they are a component.

CLASS Stack(Stacksize) = Push, Pop, Top, Empty

QUE INT ARRAY values(Stacksize)
QUE INT Stacktop

ENDCLASS

The appearance of the reserved word ASSIGN in the operation
List enables the SIMPL assignment operation (:=) to be applied to
objects of this CLASS type. As is the case with objects having
primitive SIMPL types, applying the assignment operation to CLASS
objects results in the value of the right cperand being copied to
the Locatfon of the (eft operande 1If the run-time value of the
right operand is too large to store in the (eft operand, an error
results, Assignment is not allowed for classes contafning SHARED
components because of possible side effects on shared components.

Two nameless procedures are available to provide automatic
initializatjon of UNIQUE and SHARED data of a CLASSe. SHARED
components are initialized once at program initiation through an
implicit call to the appropriate nameless procedure. UNIQUE
objects are initialized at the time of their creation (either
program initiation for globals or procedure invocation for
locals) through an fmplicit call to the appropriate nameless
procedures The (CLASS defining the type Stack above might contain
such a procedure to initialize Stack objects to be empty.

INIT UNIGU; PROC(S*lck S)
S.StackTop := =

c P

Declarations establish the types and sizes of variables, but
the size of a vartable is not part of its type. Size parameters

-7-




cannot be specified in the declarations of formal parameter: or
function results; thcse objects have sizes that cannot be
determined until run time. The size values of formal parameters
are those of the corresponding actual parageters. The size value
of a function result is that of the expression appearing in the
return statemente Thus objects of arbitrary sizes can be passed
to, and returned from, routines. 1In the following example, S1
and S2.are variables with the same type (Stack), but different

sizes (50 and 5 respectively)e.

(50) s1
(5) s2

x x

tac
tac

we o ¢ LWV

1 2= Pop(S2)

The following is a full definition of the data type "bounded"
Stack and its use ifn a SIMPL=-D program. The operations available
on Stack objects are listed in the CLASS heading; the code
imclementing these operations (except far ASSIGN which §s system-
defined) is found in the CLASS body, Push places a new value on
tor of a Stack object and returns the object as the result of the
operation, Attempts to place a new value on a full Stack object
are ignored. Pop removes a value from a nonempty Stack object
and has no affect on empty Stack objects. 7Top returns the value
on top of a Stack object, but does not remove the value from the
ocbject. Top returns Undefined (In this example, Undefined is 0O
as a result of the macro definfitions controlling the
representation.) if it is applied to an empty Stack object.
NewStack returns as its value an empty Stack object. Depth can
be used to discover the numbter of values in a Stack object and
Limit gives the upper bound on the number of values that can be
placed in any Stack objects An array of ElLtType (defined as
integer by a macro) values and an index of the last value,
StackTops form the representation for Stack objects. Each time a
Stack object is bound to storage, space is reserved for the array
and integer index.




CLASS Stack = Push, Popy, TOp, Empty, uS ck.
StackEqual, Depth, Lim i ASSIGN

?;150 control representation #/
2g:
20

T4

Values(StackSfze) /+ O..StackS{ze=-1 #»/

Stack FUNC NewStack
Stack Result
Resulte.Stacktop = -1
RETURN(Result)

Stack FUNC Push(Stack S, EltType ELlL)
Stack Result
IF %agﬁackrop + 1 = StackSize

ENDRETURN(S) /* return stack unchanged #*/

Result := S
Result.StackToB HE Resu\t.stosklop + 1
Resulto.Values (Result.StackTop? == E(t
RETURN(Result)

Stack FUNC Pop(Stack S)
Stack Re? §
iIF ;- ty g

HEN
RETURN(S)

END
Reault itackt Result.SgackT 1
esSu [ 4 p <= esu e ac (4] =

RETURN(ResG Lt s P

Eltl¥pe 'UNf Top(Stack $S)

£ RETURN(Undet:ned)
RETURN(S.Valyes(S.StackTop))

‘Bool FUNC Empty(Stack S)
RETURN(SeSt ck?op = =1

Lo




ackEqual (Stack P, Stack Q)
P) = Pepth(Q)

0 DO /* congarc all eleuents %/
tues(I) <> Q.,vValues(
E

TURN(False)

ND
RETURN(Tprue)
END
RETURN(False)

tack

INT FUNC Depth( S)
(S.StackTop ¢ 1)

RETURN

INT FUNC Limit
RETURN(StackSize)

ENDCLASS /* end of declaration of CLASS Stack #/

PROC P /* program using varijabies of type Stack */

s/
s end-of-input =/

/* wurite and re-o ues from S */

ve
WHILE oNg} y(s
WRITE op Kx
S := Popl
END

START P

- 10 -




2. Correct lmplemgntation of pata Abstracsions

A language Like SIMPL-D supporting data abstraction defines
abstractions using a collection of its primitive objects and
procedures. Because the lLanguage has a formal semantic
definition, these elements have an intuitive meaning, roughly
that the primitive objects correspond to some abstract objects
(esgss strings over some finite alphabet, or natural numbers),
and the procedures to mappings among the abstract objects. An
implementation of a data abstraction therefore has meaning,
constructed from the language-definttion meanings of the objects
and procedures used. The question is whether this meaning
corresponds to what a human being had in mind for the abstract
object. wWe begin by framing a simple definition that captures
this ideae.

Suppose that the programming language has but a single
primitive type, whose meaning is a set of abstract objects D .
(In the usual "structured programming” treatment [Linger et al,
1979] the objects D are the integers, the meanings of program
variables of type jnt.) The meanings of procedures are mappings
of cross products of p into cross products of D . (To obtain
a tuple of outputs it may be necessary to resort to “output
parameters”; in a language like ALGOL 68 such objects may be
function values directly.) The semantics of a programming
language can be thought of as the definition of the meaning
mapping: an assignment of the abstract function to the procedure
fragment of the language syntax. Because it is important to know
when such an abstract function is under discussion, we name them
with .3 peculiar notatfon due to Kleene: *5e¢ meaning function of
the program fragment P 1is written ([(P])] o Thus for a function
procedure P with two parameters,

CPl: D x p ===> D

is the meaning. The semantic definition of the Language
establishes the detailed correspondence between P and (P) .




we say that P g¢computes (Pl « The cruciatl point is that by
using the language definition we can discuss not P , but [P] ,
and thus deal only with abstract, intuitive, meaning objects, not

concretey, Syntactic cnese.

In this discussicn we have not committed to whether or not
the semantic domain D is finitee In any actual implementation
i1t must bey, but there are good reasons to take it to be in
principle unbounded as Turing dide In fact, data abstraction
itself can be used to bridge the gap, because potentially
unlimited objects Llike strings can be implemented as character
arrays using dynamic memory allocation, the ultimate Llimitation

beiny only the exhaustion of virtual memory.

The domain of a cata abstraction is like D , except that it
does not correspond to any btuilt-in programming-language objects.
For -implicity let it be a single kind of abstract objects, say
the et A o Let the objects D play the dual role of meaning
tfor .rogramming language primitive objects, and a3 second abstract
domain for opposition to A « The abstract operations are
meppings from cross products of A and D dinto A or D .

(The complication of permitting cross product ranges here adds
nothings) The abstract operations also have no buflt-in language
proceduress The data abstraction features of the language
proyide a means of defining language-to-abstraction
ccrrespondencess In the simple case we are considering, the
abstract objects A are made to correspond to tuples from D ,
and 2pstract operations to procedures mapping these tuples. That
isy the programmer jmplementing an abstraction mentally
establishes a representation mapping R ,
k

R: D ===> A (onto)
carrying the built=-4in meanings to the desired ones. This mapping
is reflected in the language by an ordered collection of
declaratifons, In SIMPL-D these are the declarations of a CLASS
in ordery so that



CLASS €C = oo
UNIQUE INT xo y,y 2

would establish the representation as having a domain of triples
of (abstract) integers. Note that in this view the
implementation syntax defines the abstraction domsin, so that no
abstract syntax is needed in addition; however, the object such a
triple is to represent §s entirely unspecified.

Similarly, the data abstraction facilities of the lLanguage
allow definition of language procedures that correspond to the
abstract operations, and the language syntax defines the abstract
domains and ranges. For example, in SIMPL-D if there were just
one operation carrying a pair of abstract objects into the
language-~primitive obtjects, we would have

CLASS € = op
UNIQUE INT x, y, 2

INT FUNC op(C ay C b)
in which the CLASS name C is used to stand in for the
recresenting triple in the parameter list. Again the syntax
carries over to the abstraction, but there is no meaning given
theree

Because of the way this syntax is constructed, it is
impossible to write a syntactically correct SIMPL-0 program that
does not implement sgme abstraction, so we make this the first
definftion: an jmplementation of a data abstraction ¥s just a
representation and & collection of function declarations. The
implementation defines the syntax of the abstract object and
abstract operations.

Once programming language code has been filled in for the
functions declared in an implementation of an abstraction, one

- 13 -




meaning jg defined, by that implementation through the Ltanguage“s
semantic definition. But the programmer s supposed to have an
abstract meaning in mind a prioris, so we now define what it means
for this intuitive idea to bte captured by the codes. It is clear
that we should assert that the given program=induced meaning s
the one intendeds. For example, in the case of a representation

?: D x D ===> A
(that is, pairs), and an abstract operation
t: A x D ~==> A
implemented by a procedure P (in SIMPL-0 it would appear as
CLASS A =P
UNIQUE INT x, y

A FUNC PC(A u, INY 2)

L LN

if the primitive type D is INT), the code represented by the
body of P defines ([P] as a mapping

e 2
(PJ: D x 0 ===>0p ,

Correctness of the implementation then amounts to the assertion
that the following diagram commutes:

1

A x p e==> ]

R B
]

2 2
b x D ===>

we call this an jeplgeentation disgrag of P . 1In general, the
implementation is gorregt #7f each of its functions satisfies
this condition; namely that any representatfon tuple, carried
into the abstract A by R and mapped by the abstract




operation, produces the same (abstract) value as mapping that
representation tuple by the implementing procedure, then
representing the result. In symbols, for the example,

correctness requires that for any pair (s,t) € D , and any x €
D

f(R(S't)' x) = R([P](S' ty x)) .

(In the special case that D {tself is a part of the abstract
domain, we require that the identity representation be used, and
we do not show it in the implementation diagram.)

We emphasize again that this definition is framed entirely in
the abstractions 0 , A , f o, and [P) . 0f courses there is
a correspondence with the language object P through (P) , and
the tuples from D have language correspgndentsy byt these do
not occur in the definition. Note also that the abstract syntax
comes entirely from the implementation syntax~=-{t has no
independent existence, and the abstract meaning is so far
confined to the mentatl processes of human beings.

Side effects of the implementation can also be discussed in
this context, Intuitively, the implementation has side effects
if executing tts procedures not only yields their returned
values, but furthermore alters the state of some internal
storages 1In SIMPL-D, "internal storage"” is the SHARED and UNIQUE
data of a CLASS, which we are treating as a tuple of objects from
the set D « In framing a definition of “side effect," should
all storage within the implementation be in the domain of the
intuitive representation function, or should some of it (say the
‘SHARED part) be in a hidden, “sfide-effect™ store? We choose to
include everything in the representstion domain, pecause §t
preserves the intuition that this mapping captures the entire
correspondence between implementation objects and abstract ones,
and because the resulting mathematics §s cleaner. (As an example
of the latter, the implementation dfagrams explicitly show all
the releyant dataes)

- 15 -




Intuitively, there is a side effect if storage s different
after a procedure has been jnvoked than it was before. To
capture the idea of a time history, we consider an gxtended
implementation diagram that displays a succession of
implementation procedure invocations. For example, for the
operation f: A x D ==> A above, the implementing P afght be

used on its own output, lLeading to the disgram:

f f

Pl 2 trl
. x O ===3 B x. B =e=3_

(In the diagram we omit not only the identity map 0 =-=> D , byt
2
the internal R: D ==> A )

fFormally, there is a sjde effect in a sequence of
imgclementation proceduyres iff an extended implementation diagram
exists with the following property: Starting at the upper left,
some abstract x s the image under the representation R of
the set (of tuples)

E'(d'“(d)‘l)o
Some ‘0 € E is carrfed along the pottom of the diagram back

‘into E by the implementation procedures in composition.
However, there exists a y € E that is carried along the pottom

of the diagram to vy distinct (as a tuple) from y . A side
effect is pengvolepnt $ff every such y° & E o

The intuition behind this detinition (following CHoare 1972))
is that “side effect™ is meaningless unless the extended
implementation diagram returns to a representation of the same
abstract object. That s, the notion depends not just on the
implementing code, but on the representation that the prograasmer

- 16 =
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had in minde SO0 long #s extended implementation diagramss produce
sequences of repéesentations of different abstract objects, the
etfect is primary, not “side”. When there s a return to the
same a rato e t, but with a different representing tuple, a
side ef ¢t has occurreds Benevolence means that such changes do
not matter--the representation mapping washes them out. The
somewhat surprising thing is that in any abstraction correctly
implemented by given code, any side effects myst be benevolent,
hrowing an interesting highlight on Hoare”s contention that the
terms are almost contradictory. For suppose that a side effect
is not benevolent; that is, for some extended implementation
diagram a set E of implementation tuples representing the same
abstract object is mapped partly into ftself, and partly fnto
representations of another abstract objecte Choosing one
representing tuple of each kind at the lower left of the dfagram,
on the upper (abstract) path they lead to the same object, but on
the Lower (implementation) path they do not. Hence the
implementation cannot be correct.

when the representation mapping is 1-1, side effects are
impossible accor ing to this definition. There are no classes of
representing tuples other than singletons, and so the benevolent
confusion within such a class cannot occure. The usual notion of
a "side effect” that &s pot benevolent is formally just an

incorrect implementatic~. .t the object y that is sent to y°
# y by the code is one that displays a side effecty, and
procedure Q misbehaves 1 " where it would not have

misbehaved on y , there .. (wo possible cases according to the
formal definition: 3

(1) The side effect in the extended diagram prior to the
pplication of Q@ 1s benevolent; that is, the representation

does n t distinguish between y and y°“ « Then Q@ ftself is
incorrect. f

(2) The side effect is not benovelent; that §s, the

L4

representation maps y and vy onto different gbstract objectse.

- 17 =
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Then somewhere in the extended diagram prior to the application
of Q there is an error in the implementation.

The situation regardin, side eifects can be summarized as
tollows: correctness of ar implementation (as defined by
commuting implementation ciagrams for all its procedures)
guarantees that all extended implementation diagrams will also

commute.

According to the definition above, the implementation fixes a
syntax--the sets of objects, and the names, domains, and ranges
of operations.s This syntax is called the signature of the
abstraction, as in [(ADJ 1978]. We now investigate the structure
of all abstractions with a fixed signature, For any two
abstractions l1 and lz with the same signature, a

homgmorphism h: I1 -=> lz satisfies equations such as

h(f(xoy)) = fCh(x),h(y))
for all x, y in the domain of f in l1 e for all operations
f of the signature (with appropriate argument lists--here shoun
as pairs). We use the same name for the operation f in both
abstractions. An onto homomorphisa is an gpimorphise; a 1-1
epimoruhism is an jgscmorphispe We say that lz is a homomorphic

(epimorphic, isomorphic) impge of 11 (under h )¢ Identifying

all isomorphic abstractionsy, define a partial order by l1 [ .2

itt A1 is an epimorphic image of lz e« The trivial abstraction

8 containing one element mapped to itself by all operations is
the least element in this partial ovr.oeringe.

dhen a person sets out to implement an fntufitive abstraction
in a programming language like SIMPL-D, he proceeds by first
choosing a representation, then writing code to manipulate its
tuples appropriately. However, given a SIMPL=D CLASS definition,

el




it may implement certain abstractions correctly, whatever the
programmer had in mind, One candidate is always the trivial
abstractione In that case, whatever the programmer writes for
code is correct if the procedures do not abort or fail to
terminate, because every tuple is mapped to the same abstract
point. If the trivial abstraction is not what the programamer had
in mind, it is tempting to say that the representation {s
incorregt, but according to our definition that distinction
cannot be made--the range of the representation mapping is
entirely intuitives Another fntufitfive abstraction always
correctly fmplemented by any code is one that mirrors the
implementation itself., That is, the representation is an
identity map, and the intuitive operatfon corresponding to
procedure P s just [P]l . 1In this case the top and bottom
Lines in the implementation diagram are identical, so it
necessarily commutes. (Here even the possible faflures of
tefninatiOn in the code are of no consequence.)

Between the trivial abstraction and the one that mirrors the
implementation, all elements of the partial ordering are
correctly implemented, because given any A that is an image of
the mirror-image abstraction under a homomorphisa h, h itselt is
a representation onto A that forces the aporopriate diagrams to
commute, It is likely that the successful programmer had some
element of this partial order in mind, but probably not the
extreme elements., Insofar as the implementation takes advantage
of the full detail of the representing tuples, the abstractions
it correctly fmplements are Likely to cluster near the
implementation-mirror end of the order; i{f the representing
structure is largely ignored, near the trivial end.

The definition above captures implementation of an g priocri
abstract data type. 1f the human being who envisioned the type
is available to act as #n oracle, and can perform the
representation function, then the definition can be used directly
to perform tests of the fmplementation. The person chooses a




representing tuple, maps it to the corresponding abstract object,
performs abstract operations and records the result. The
implementing program is given the same representing tuple and
produces another such tuple; the human being alsoc maps this to
its corresponding abstraction and compares it with the recorded
result. Agreement means a successful test. This process cannot
be autgmated without some form of specification that describes
the ahstract type independent of the implementation. We have
chosen algebraic axioms [Guttag 1977] as the most attractive such
specification method. The exact form the axioms take can be left
open; in particular, we have not decided the several questions of
(a) whether or not the functions involved must be total (and
hence the form recursions are allowed to take), (b) whether or
not existential quantifiers will be allowed as well as unfversal
quantifiers, and (c) whether of not "“conditional" cases will be
allowed in the axiomse Our testing scheme will work in any
compination of decisions about these matters, so the decisions
can be deferred.

whatever form the axioms take, they are a finite collection
of relations among terms constructed from abstract functions,
closed by quantifying the variabtes, An intuitive abstraction
interpretation into the intuitive domain (in the technical logic
sense). That is, the intuitive axjom retation holds of the
intuitive term objectss Given any point in the partial order of
abstractions satisfying a set of axioms, points below 1t {n the
partial order also satisfy them, because the epimorphism that
mags Jownward in the partial order commutes with all the
operations, and this is sufficieant to show that the axioms are
inherixed.‘ we report more results on the relationship between
the implemented abstractions and the specified abstractions in
[Ardis and Hamlet 1979].,

Given a SIMPL=-D CLASS and a set of axfoms written in terms of
its operation names, there are thus three things of interest




within the partial ordering of abstractions:
(1) The abstraction the programmer had in mind.

(2) The set of atstractions that the code correctly

implements.
(3) The set of abstractions that satisfy the axiomse.

1t it. happens that (1) {s somewhere in (2) and also in (3), the
programmer can be said to have succeeded. (However, more could
be demanded. Some of those taking the algebraic-axiom approach
often require that (1) correspond to the initial element of (3),
viewed as a category [ADJ 1978]. We do not insist on this
additional condition, although we would be pleased to be able to
detect that it is satisfiedes) There are many ways for the
programmer to fail, however. Since (1) does not and cannot
appear explicitly in the SIFPL-D text, technically we can only
investigate the relationship between (2) and (3). However, both
code and axioms are human attempts to capture (1), and they are
sufficiently different that we may hope thefr relatsonship will
illuminate their common source, even though it is not formally in

evidencee

Testing is the mechanism we have chosen to investigate the
relationship between axioms and code. Test points in the form of
implementation tuples can te inserted in the axioms viewed as
expressions in SIMPL-D, This amounts to associating with each
axiom its extended implementation diagramy, and moving across the
bottom of the diagram. Since the outermost function in each
axiom is equality, and since the representation mapping into the
Boolean domain {(grue, false) is Llikely to be one-one, we can
view the test as supplying half the information about
commutativity for one point.

Let us suppose that such a test fails. That is, some
representation tuples are choseny, the appropriate values that

occur in an axiom are worked out (in fmplementation tuples
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ajain), and the resulting value represents false. Then {f the
axiom does hold for the intuitive abstract objects, the
implementation must te incorrect (in the technical sense above),
and its failure lies in one or more of the procedures whose names
appear in the axiom. Since the axiom hol 3 of the abstract
objects, the test point must lead around the upper path of the
extended implementation diagram to true; but, the lower path
leads to false. This can occur only if one of the component
implementation diagrams similarly fails to commute. It is
important to note that nothing is assumed about the specification
“capturing” the intuitive abstraction except that a single axfom

is true of ite.

There is an exception when an axiom uses existential
quantificatione Then the additional possibility exists that the
code is not incorrect, but rather the data points used are so
sparse that no representation of the needed object was included.
Furthermore, an existential faflure is over a whole set of
points, and not for a single point, thus making it harder to
trace. Perhaps these are sufficient reasons to avoid existential
quantifiers in axioms.

Unfortunately, a successful test gives less information: if
the axioms define the abstraction, and the fmplementation
satisfies them for a point, it could yet happen that several of
the implemented funcions are not correct for the point, but in
compination their errors cancel each other to make the test
succeeds The case of an existentfally quantified axiom is again
noteworthy: the existence of a tuple that satisfies the axiom
may be illusory if the proctedures implementing the operations on
it are incorrect. We do not expect tests to establtish the
correctness of the implementation, but the success of a test when
the code is wrong for the test inputs s particularly disturbing.
This difficulty can occur even with exhaustive testing, and even
if the equality function of the abstraction is correctly
implementeds Intuitively, it arises because the definition of

- 2 -




correctness (following Hoare) proceeds function-by-function,
while the algebraic-equation specification may only define the
operations in combination. Of course, the success of an axiom
involving only one operation, under exhaustive testing and

assuming a correct implementation of equality, is definitive.

we do not contemplate exhaustive testing, but we do want to
know that an incorrect implementation ppssesses a test point that
exoosés its errore With the coverage criteria described in
Section 4, we can then measure the liklihood that a given set of
tests include the crucial points. 1f all tests might succeed,
yet errors remainy, our testing scheme is on shaky ground.



fe DAISIS: SIMPL-D with Axjoms and Jesis

Axioms and test cases can be appended to a SIMPL-D CLASS as
cefined in Section 1. The form is:

. SIMPL=D CLASS definition
AXIOMS

s algebraic a;uons describing the abstraction
TESTPOINTS

. declaraticn and initialization of test values
TESTSETS

. sets of test points to be used with each axiom

START

we call the resulting system DAISTS for exactly what ¥t is: Data
Abstraction Implementation, Specification, and Jesting System.

In the AXIOMS section each axiom has a name, an optional free
variable list containing the types and names of each free
variable used in the axfom body, a colon, an axiom body, and a
terminating semicolone The axjom body has the form:

<left side> = <right side>

where either side may contain references to free vartiables
and operations. In addition, the <right side> may contain a
conditional expression Like that of ALGOL 60:

1F <boolean> THEN <exp> ELSE <exp>

One of the familiar axfoms of the bounded stack CLASS

appears as:

Pop2(Stack S, ELtType 1
$,1)) =P

e
Pop(Push(S, 1F = Limit

$S)(S)
op
S;

r~Xxm o

)
THEN
ELSE

This axiom tells us that the result of popping » Stack S after
pushing a new value I onto S is the same as either:

a A




1. the value of the otject obtained by popping S (If S
already contained the maximum number of values before the push,
attempts to push a new value on S would be ignored.), or

2. the value of the original Stack S otherwise.

The TESTPOINTS section looks like a SIMPL-D procedure,
complete with Local declarations and executable statements. This
section has been included to allow users to build cbjects to be
reterenced in the TESTSETS section of the program. An object
that is expensive to construct can thus be used in testing
several axioms without repeating fts construction. For example,

a useful point for testing a bounded Stack might be obtained as:

" =

ack S1
:= Push(Push(Push(NewStacky,1),2),3)
The TESTSETS section of the program contains a List of axiom
names with values to be substituted for the free variables of the
arioms., For example, a three-element test set for the Popl axiom

js:
Pop2: (NewStack,1), (S1,2), (S1,3);

This set of tests and the Pop2 axiom will be used to "exercise”
the implementation. First with NewStack tound to S and 1 bound
tc I, we will use the body of the Pop2 axiom as a driver program
that invokes implementation functions. 1If the left and right
sides of an axiom do not return values that are judged to be
equal by the appropriate implementation function (here,
StackEqual), a diagnostic message is printed indicating that the
axiom has failede This process is repeated with S1 (an object
inftialized in the TESTPOINTS section) bound to § and 2 bound to
1, and finally with S1 bound to S and 3 bound to 1.

In order to achieve this behavior, we compile the axioms into
procedures and the test sets into calls on the appropriate
proceduress The Popl axiom becomes:




PROC Pop2(Stack S, ElLtType I)
TF SRGT. Stactéqua((xgttPush(S S
Twen 1P pepthis)zlimit THEN Pop(S) ELSE §)
i WRITE( 222 axiom Pop2 failed #w#s”)

The following program is the bounded stack example from
Section 1 augmented with axioms and test sets. Rather then
repeat the orfiginal CLASS declaration for the bounded stack type,
we have employed the SIMPL-D USE directive which obtains the
CLASS s representation and operatfon interface inforsation from
the file appearing as its arguemente This file must have been
previously created by a separate compilation of the module
containing the bounded stack declaration. We have reproduced the
interface information in the cosments following the ysE
directive. NoOtice that the axioms are parameterized by the type
EltType, which is defined by macro definitions preceding the
axioms. However, the test sets are given in terms of integer
values, the type bound to EltType during this compilation. No
test sets are given for the axioms Emptyl, Topi, Popl, and
Depthli. These axfoms involve no free variables; the single calls
to test them are generated automatically.

/+ USE “Stack” ¢/

/* gperationz for Stack *

/* Stack FUN Pus?(Stact. }NT) */

[ Stac} FUNC P? Stack) *

7+ INT FUNC Topt8tack) #/

/* INT FUNC Enpt{(Stafk) *

/* INT FUNC Stac Egua (Stack,Stack) */

/+ INT FUNC Depth(Stack) +

/» INT FUNC Limit =/

DEFINE True = “1°; False = “0°, LGN
EltType = “INT®, Undefined = “0
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AXIOMS /* the "“functional™ model */

Emptyt:
Empty(NeuStack) = True;

Empty2(Stack S EL
Empty (Push (S, 1T

Topl:

Top2(Stack S 7 ype
rop(Pushls =

Pop1:
Pop(NewStack) = NewStack;

Pop2(Stack Sy EltType 1):
Pop(Push(S,1)) = If Depth(S) = Limit
THEN Pop(S)
ELSE S;
Depth1:
Depth(NewStack) = 0;
Depch(Sta Sy ELtType 1):
Depth (P sh%S.t)) = IF Deptn(s) = Limit
THEN Depth(S)
ELSE Depth(S) + 1;

EqualC:
StackEqual (NewStackyNewStack) = True;

€Equali(Stack Pt(

e 1, EltType J):
StockEgua ’)) = w
I1F D

tTy
Pus (aQ
it

EQUC[(PQQ)
PU’h(P.l)'Q)

ush(ﬂ J4))

AA'D -~ x

L

gEqual2(Stack P
a

Stack Q)
StacktEqual(P.Q) =

i tackEqual(Q,P);

Equal3(Stack P EltT{g

Stacquua (Push vNeuStlck) = False;
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TESTPOINTS /* to be used in the test sets #/

s1, s2

(o173
e
-
)
-

€ N n

T Ne=d

L1
MNP Hoo oo
Z ~NNMm

TESTSETS /+* to “test™ the axioms */

Empty2: (S1,7), (NewStack,1);
1322! ineusiac‘.é):'(ss.zi; 5
Popl: (NewStack,1), (s1,2), (S2,3);
Depth2: (NewStacks1), (§1,3), (82,%);
fasatl: (il (b Gl
Equal2: (NewStack,si), (838 hesdtackd, t513833¢ (s2,51);
Equal3: (NewStacks?)y (S2,2);
START

The very first running version of DAISTS uncovered an error
in the implementation of Depth. The Depth! axiom was translated

into:

1F §goz. (Depth(NewStack) = 0)
€ &
DURITE("'O error ¥n axiom Depthl *#27)

Our original Depth function was {implemented as follows:

INT FUNC th(Stack §)
R N(

Egﬁg Se.StackTop)

(compare Section 1) The StackTop component of a Stack object is
assigned the value =1 in NewStack to §ndicate that the object is
empty. (The index range of SIMPL arrays §s O..upperbound=1.)
Thus, Depth(NewStack) returned =1 and the message that the test
data failed the Depth? axiom was printed.

The axioms and tests cannot guarantee that the ifsplementation
is without errorse Errors in the fmplementation may interact in
ways which still satisfy the axfoms. For example, §f Push simply
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updated the StackTop component of Stack objects without retaining
any values, the only axfom to fail would be Top2 since
Top(Push(S,1)) # I. Now, if the equality function for EltType
objects was also incorrect (always returning true), the axioms
would all be satisfied by a faulty implementation. However, if
we require the user to supply enough test data to cover every
part of his axioms, he may find that he cannot supply test data
to the tquall axiom to reach the ELSE clause guarded by the

condition:
Depth(P) < Limit & Depth(Q) < Li¥mit 8§ 1 # J

because I = Jo, Preliminary fdeas about coverage monitoring are

presented in the next sectione.
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4. Jesting, Structural Constraints, and Correciness

In conventional program testing, specifications enter in the
form of an "oracle,” a means of magically obtaining the correct
results with which the test is to agree. In practice this oracle
is a human being examining the output, perhaps too often willing
to agree with the program. (This posfition can be justified--some
programs are solving problems that can be attacked no other way.)
It is crucial to distinguish an oracle that can judge the output
for any input, from a “limited oracle”--a set of given input-
output pairs encoding only a part of the complete behavior. The
latter can be obtained by physical simulation and by hand
calculation, but when structural testing criteria are used,
inputs are generated that may not keep within a given collection.

Testing based on pure input-output pairs has Llittle to
recommend ft; since any test f{s finit;o ft conld be met by a
program written as a case statement covering the given pairs, and
otheruwise entering a never-ending Lloop. The additfon of
structural test criteria, additional constraints on the
collection of tests, has its origin in avoiding such
counterexamples. The simplest structural criterion is that each
and every statement of the tested program must be executed for
some input among the tests., If the every-statement criterion is
met, then it cannot be that the progras {s hiding a special block
of code that takes some unpleasant action outside the finfte test
collection, Put the other way, it {s certainly wise to have used
all the code in some way; entirely untried code can contain
arbitrarily nasty bugs. Formally, structural criteria are
designed to lead to reliability of @ test=--the property that it
errors are not exposed, there are no errors. (et a program P
be given the meaning (function computed) ([P) by its semantic
definition, and let f be the function that the program ought to
compute (according to the idea of some human being)e. Then a
collection of test data 0 is celipble for P {ff




tpil = fI ==> [p) = ¢ ,
L D

This definition (due to [Howden 1976]) makes an exhaustive test
trivially retiable. Every program has a finite reliable test,
but there is no way to judge mechanically a given program P and
test data D to determine if D is reliable for P ([Howden,
1976, Hamlet, 1977a)l. By strengthening the specification to
include more information about how the program must behave, or by
restricting the set of errors that must be detected, mechanically
checkable reliability can be attained [Hamlet 19781].

The DAISTS processor described in Sectjon 3 provides a rich
testiny vehicle. The dual machine-processable texts of axioms
and implementing code can make do without an oracle. when trying
a test point in an axfom, we do not know what operation values
shculd result, but we do know a relationship that shoutld hold
among them. The virtue in this form of oracular information is
that it is available for any and all test points that might be
tried, not only those of a preselected set. The drawbacks of
spurious success have been noted in Sections 2 and 3. 1In DAISTS,
tests can be required to satisfy structural criteria not only on
the program code, but on the axfoms as well. In this section we
explore the potential of tests with structural constraints for
detecting inconsistencies between abstractions the code correctly
implements, and abstractions that satisfy the axioms. In the
process we also hope to lLearn about the relatfonship of code and

axioms to the abstraction the programmer had fn mind.

Section 2 descrites the significance of a test failure in an
axiom compiled into code: either the implementation or the axiom
(or both) .is inconsistent with the intuitive abstraction desired.
It is probably easiest for a person to analyze the code function-
by-function, and turn to the axiom only {f each step in its
extended implementation diagram checks out. In what follows it
is assumed that each error in code or axfom §s corrected as

discovereds The result of testing is then a collection of points
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tor «hich the axicms do execute successfully. Structural
criteria are now introduced to enhance the significance of the

successful test collectione.

fFor conyenticnal program code there are path and expression
structural constraints, corresponding to the control/data
dichotomy, A combination of the two can be retfable, but not
within a time feasible for real programs. Hence, a number of
ajcroximations to the impractical exhaust jve constraints exfiste.
monitoring a particular constraint can be accomplished by a run-
time support routijne in DAISTS (the path constraints are
particularly easy to handle). In what follouwus we concentrate on
the significance of constraints, not on details of approximations
and monitoring algorithms, which are straightforwarde The
compiler-based testing apgrcach [(Hamlet, 1977b] has the virtue
that all testing is accomplished by a run-time module, in which
the al,orithms are written in SIMPL-D, and therefore easy to
change and to experiment with. We therefore expect to defer

decisions about what and how to monitor as long as possiblee.

Path criteria are the easier to understands All possible
inputs to a program cdivide into equivalence classes according to
which control-flow path each input follows. A given test
collection meets an exhaustive path constraing #ftf it includes
cne member from each such equivalence class. The unreliability
of path testirg [(Hoyden 15761 results from an inproper or
insutficient coverage of some path-defined clagsses Approximations
tc the exhaustive path constraint are necessary, because when
code cuntains loopsSy the number of paths may be unbounded. The
simplest approximation regquires each statement to be executed for

some (est pointe

within axioms corpiled into code, the aonly analog of path
constraints occurs when there are conditional cases, and then
exhaustive path testing is the same as "branch testing”--
requiring that both alternatives be taken. Except for this case,
the test points necessarily take the single path through each




axiom that corresponds to moving across the bottom of its
extended implementation diagram. However, it may be helpful to
the programmer to “cover®" one axiom at a time, and observe the
path coverage that results within the implementation procedures.

Expression constraints on code have a better axiom analog
than do path containtse All possible inputs to a program are
divided into equivalence classes by value sequences (histories)
assigned to a single expression within the program. A given test
collection meets an exhaystiye expression constraint i#ff it
includes one member from each such classos Expression constraints
are lLess used in practical testing because they are harder to
approyimate, and even the approximations are expensive to
monitor. One of the simplest approximations is that of
forbidding constant subexpressions--a set of tests is lacking if
any nonconstant part of any expression has exactly the same value

history for all test points.

Since axioms are expressions, they are covered just as is
codey according to an expression constraint. An obvious
interpretation if axjom expressions remain constant, is that
(insofar as the tests can determine) the trivial abstraction has
been specifiede Axiom expression coverage has more significance
than coverage for code, just because there are few axiom "paths"”
to consider.

The interplay between structural constraints for axioms and
for code suggests a testing methodology something Like the
following: Begin by finding test points that cover the axioams,
with as Little redundancy as possibles The deficiencies of such
a test collection in code coverage indicate parts of the code to
examine for errors (usually of the sort that the correctly
implemented abstractions are too complex). If the code proves to
be correct on examination, seek additional test points to cover
ity and examine the redundant coverage these points introduce in
the axioms, suggesting that the abstractions satisfying thes are
too simple,




5 $gatus of DAISIS

work is proceeding on the DAISTS processor, At this writing,
the processor will permit users to supply implementations,
axioms, and test points and will “"exercise” the implementation.
In the next stage of development, we plan to add simple
structural testing criteria to check statesent coverage and

expression variability.
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